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STiCM Lecture 26 

 

Unit 8 : Gauss’ Law; Equation of Continuity 
 

Essential tools to study Fluid Mechanics / Electrodynamics, etc. 
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Previous Unit: Unit 7 

 

 

 

Physical examples of fields.  

 

Potential energy function.  

 

Gradient, Directional Derivative, …. 
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Potentials       Fields  

Integration / Constant of Integration 

Boundary Value problem 

Differentiation 

Mathematical 

Connections…..  

SCALAR                                VECTOR 

POINT FUNCTIONS                POINT FUNCTIONS 

 

s 0

ˆ

ˆ lim  









 

 

d
u

ds

r dr
u

s ds
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At what rate can that density 

change? 

What can cause a change in the 

density of the fluid inside the kettle?  

4 

Gauss’ Law;  

Equation of Continuity.  

Hydrodynamics & 

Electrodynamics 

illustrations. 

Learning goals:  

Johann  

Carl  

Friedrich  

Gauss 

1777 - 1855 

When there is no source and no sink, the density of matter 

in a volume element can change if and only of matter 

flows in, or out, of that region across the surface that 

bounds that volume region. 

 The divergence theorem : an exact mathematical 

expression of a conservation principle.  
PCD_STiCM 
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Terrestrial Magnetism 

5 

volume surface
region enclosing

that
region

ˆ( ) ( )dV A r A r dSn   
  

The result is equally consequential 

with regard to fields just as well as 

for matter.  

http://www.gap-system.org/~history/PictDisplay/Gauss.html 

Johann  Carl Friedrich Gauss 

and Wilhelm Weber 

We shall develop further handle on 

methods of vector calculus and 

apply the techniques to study fluid 

dynamics and electrodynamics. 
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1 1
ˆ ˆ ˆ=e e e

sin
r

r r r
 

  

  
  

  

1
ˆ ˆ ˆ=e e ez

z
 

  

  
  

  

ˆ ˆ ˆ=e e ex y z
x y z

  
  

  
s 0

ˆ

ˆ lim  

d
u

ds

r dr
u

s ds

s r










 



 

 



Consolidated expressions for 

the GRADIENT 

Cylindrical Polar Coordinate System 

Cartesian Coordinate System 

Spherical Polar Coordinate System 
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ˆ
d

u
ds


  The ‘GRADIENT’ is a vector operator  

– it is of course not a vector. 

The operator would operate on an operand and 

generate new entities as a result of the operation. 

:   .  :Operand SCALAR POINT FUNCTION RESULT 

  using     

( ) : DIVERGENCE of a VECTOR POINT FUNCTION

Other operations GRADIENT OPERATOR

A r





( ) : CURL of a VECTOR POINT FUNCTIONA r
PCD_STiCM 
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( ) : DIVERGENCE of a VECTOR POINT FUNCTIO

  using   

N

  Other operations GRADIENT OPE

r

RA

A

TOR





( ) : CURL of a VECTOR POINT FUNCTIONA r

 of    .  :GRADIENT SCALAR POINT FUNCTION RESULT 

This is NOT a scalar product of two vectors! 

This is NOT a vector product of two vectors! 

PCD_STiCM 
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Field Lines 

2

0

1
ˆ( )

4
r

q
E r e

r


Field intensity fall like 1/r2 

Field strength: 

VECTOR POINT 

FUNCTION 
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Vector Fields: 

‘Point’ 

function 

( ) ( , , )

( , , ) ( , , )

V V r V x y z

V r V z   

 

 
( , )V V r t

PCD_STiCM 



 

11 

Vector Fields: 

‘Point’ 

function 

( ) ( , , )

( , , ) ( , , )

V V r V x y z

V r V z   

 

 

In the ‘continuum model’, 

the velocity field          

is a vector point function. 

( )V V r

( , )V V r t

PCD_STiCM 
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Define: “Flux” of a vector point function 

surface

ˆFlux crossing a surface ( )  A r dSn 

( ) :  A vector point function.A r

Flux: additive property - obtained by integrating the quantity 

ˆwhat is the direction/orientation of  ?n
        UNIT NORMAL TO THE SURFACE AT A GIVEN POINT

.... but which 

surface? 

.. what is the direction of the unit normal? PCD_STiCM 
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surface

ˆFlux crossing a surface ( )A r dSn 

( ) :  

A vector point function.

A r

Elemental 

directed/oriented 

‘Area’ 

PCD_STiCM 
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The direction of the vector 

surface element must be defined 

in a manner that is consistent 

with the forward-movement of a 

right-hand screw. 
C traversed 

one way 

C traversed 

the other  way 

right-hand-screw 

convention must be 

followed. 

surface

Flux crossing a surface

ˆ( )A r dSn 

PCD_STiCM 
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Consider the 

sense/direction in 

which the rim of the 

net can be traversed 



What about 

some other 

point ? 

… and what if you ‘pinched’ the 

net and pulled it ‘above’ the rim? 

… right 

hand 

screw 

PCD_STiCM 
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The surface under 

consideration, however, better 

be a ‘well-behaved’ surface! 

A cylinder open at both ends is 

not a ‘well-behaved’ surface! 

A cylinder open at only one end 

is ‘well-behaved’; isn’t it already 

like the butterfly net? 

Are there non-orientable surfaces?  

PCD_STiCM 
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Consider a rectangular 

strip of paper, spread flat at 

first, and given two colors 

on opposite sides. 

Now, flip it and paste the 

short edges on each other 

as shown. 

Is the resulting object 

three-dimensional? 
 

 

How many ‘edges’ does 

it have? 

How many ‘sides’ does it have? 
PCD_STiCM 
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How is the 

earring?  

It is MOBIUS !!! 

http://mathssquad.questacon.edu.au/mobius_strip.html 
PCD_STiCM 
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The Möbius strip used to be common in belt drives 

(eg. car fan belt).  

Modern belts are made from several layers of different materials, 

with a definite inside and outside, and do not have a twist.  PCD_STiCM 
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http://www.mcescher.com/ 

“The laws of mathematics are not merely human inventions or 

creations. They simply 'are'; they exist quite independently of 

the human intellect. The most that any(one) ... can do is to find 

that they are there, and to take cognizance of them. ” 

Maurits 

Cornelius 

Escher 

1898 - 1972 

PCD_STiCM 
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Flux of a vector field 

( ) :  A vector 

point function

A r

ˆ( ) :  unit vector 

normal to the surface at the point 

n r

r

surface

Flux crossing a surface

ˆ( )A r dSn 
PCD_STiCM 
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Source 

Sink 

surface

Flux crossing a surface

ˆ( )A r dSn 

What happens when the size of the volume 

element shrinks,  

becoming infinitesimally small? 

Is there any net accumulation of 

the flux in a volume element? 

Sources and 
Sinks may be 
present in the 
region ! 

PCD_STiCM 
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-3 1 -2 1

( )v( ) has the dimensions 

ML  LT ML  T



    

m r r

Consider a mass/charge density  or 

crossing a certain cross-section of area 

at a certain rate.

 m c

Amount of mass/charge crossing unit area in unit time 

-3 1 -2 1( )v( ) has the dimensions QL  LT QL  T

Amount of charge crossing unit area in unit time

     c r r

PCD_STiCM 
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0 0 0Consider a point ( , , ) 

in a region of the vetor field ( )

P x y z

A r

surface

How shall we determine the 

 crossiflux

ˆ( )

ng a surface;

 ?A r dSn
PCD_STiCM 
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δz 

δx 

X 

Z 
Y 

δy 

(0,0,0)

PCD_STiCM 



27 surface

Flux crossing a surface

ˆ( )A r dSn 

0 0 0The point ( , , ) is in the 

region of the vectore field ( )

P x y z

A r

z 0, 0 0 z 0, 0 0

ˆNET Flux through the -face, (perpendicular to ),  is

, ,
2 2

zxy e

z z
A x y z A x y z x y

 
 

    
      

    

δz 
δx 

X 

Z Y 

δy 
(x0,y0,z0) 

ˆ
ze

ˆ
ze

Note! Only the z-component 

contributes to the total flux 

through the faces parallel to 

the xy plane. 

Two faces parallel to the xy plane 

PCD_STiCM 
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δz 

δx 

X 

Z Y 

δy 

0, 0 0( , )

  
 

   

z

x y z

A
z x y

z 0, 0 0( , )


 

   

z

x y z

A
V

z

Adding the flux through all faces, total flux 

ˆ( )    
yx z

whole
cube

AA A
A r dSn dV

x y z

  
    

   
 

(x0,y0,z0) 

surface

Flux crossing a surface

ˆ( )A r dSn 

surface

Flux crossing all 

the six surface elements

that enclose the cell

ˆ( )A r dSn 

z 0, 0 0 z 0, 0 0

ˆNET Flux through the -face, (perpendicular to ),  is

, ,
2 2

zxy e

z z
A x y z A x y z x y

 
 

    
      

    
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Adding the flux through 

all faces, total flux 

ˆ( )    
yx z

closed
surface

AA A
A r dSn dV

x y z

  
   

   
 

δz 

δx 

X 

Z Y 

δy 

(x0,y0,z0) 

surface

Flux crossing a surface

ˆ( )A r dSn 

volume surface
region enclosing

that
region

ˆ( ) ( )d A r A r dSn    
  

Gauss’ Divergence Theorem 

The integrand of the volume integral is 

called the divergence of the vector. 

div 
  

    
   

yx z
AA A

A A
x y z
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Divergence of a polar vector is a scalar 

 

Divergence of an axial-vector is a pseudo-scalar 

PCD_STiCM 
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http://www.physics.iitm.ac.in/~labs/amp/  pcd@physics.iitm.ac.in 

We shall take a break here……. 
 

Questions ?                    Comments ? 

Next: L27 

Equation of Continuity 

PCD_STiCM 
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Adding the flux through 

all faces, total flux 
surface

Flux crossing a surface

ˆ( )A r dSn 

volume surface
region enclosing

that
region

ˆ( ) ( )d A r A r dSn    
  

Gauss’ Divergence Theorem 

PCD_STiCM 
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surface
enclosing
t

volume
reg

hat
reg

io

i

n

on

( ˆ)) (E rr dSE nd  
 

 

0

( )E r



 

0volume volume volume
region region region

0 0

( )
1

d d
q

dE r





 
   
 

    

 2

2

0surface
enclosing
th

volume
regi

at
regi

o

on

n

ˆ ˆsin
4

( ) r rE rd
q

e r d d e
r

  



 

 
 

  
 



Differential (or ‘point’) form of 

the Gauss’s law 

Application: 

electric intensity 

field due to a 

point charge 

PCD_STiCM 
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ˆ( )    
yx z

closed
surface

AA A
A r dSn dV

x y z

  
   

   
 

δz 

δx 

X 

Z Y 

δy 

(x0,y0,z0) 

surface

Flux crossing a surface

ˆ( )A r dSn 

volume surface
region enclosing

that
region

ˆ( ) ( )dV A r A r dSn   
   Gauss’ 

Divergence 

Theorem 

The integrand of the volume integral is 

called the divergence of the vector. 

Cartesian  expression  of ‘divergence of the vector’  not 
its definition! 

div 
  

    
   

yx z
AA A

A A
x y z
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Physical meaning of ‘divergence’; definition  free  from coordinate system 

remember: flux is defined through a surface,  

                   whereas divergence is defined at a point 

flux per unit volume,  

at that point 

Flux is a scalar quantity. It is not a scalar field; it is not a 

local quantity – it is not a ‘point function’. 
 

Divergence is a scalar field; it is a scalar point function,  

it is defined at each point of space 

Take the limit of 

the ratio of  

total flux over δs  

to δV 

volume surface
region enclosing

that
region

ˆ( ) ( )dV A r A r dSn   
  

enclosing
surface

0

ˆA(r) ndS

div lim
V

A A
V 



  



PCD_STiCM 
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Gauss’s  Divergence Theorem 
 

If a volume V is bounded by a surface S, then, for vector A, 
 

The surface integral of the normal component of a vector 

A taken over a closed surface is equal to the integral 

of the divergence of A taken over the volume enclosed 

by the surface 

n̂ dSsince S is a closed surface, the unit normal   of  

 (elemental area) is the outward normal 

Conversion of a surface integral to a volume integral. 

volume surface
region enclosing

that
region

ˆ( ) ( )dV A r A r dSn   
  
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volume surface
region enclosing

that
region

ˆ( ) ( )dV A r A r dSn   
  

Physical Meaning: 
 

Integration of the faucets 

(source of vector field) over a 

volume  

is equal to the  

flux flowing out through the 

surface enclosing the volume. 

PCD_STiCM 
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div 
  

    
   

yx z
AA A

A A
x y z

1
ˆ ˆ ˆ ˆ ˆ ˆe e e e ( , , ) e ( , , ) e ( , , )z z z

A

A z A z A z
z

          
  

 

   
           

ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

1
ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

z z

z z

z z z

A z A z A z

A z A z A z

A z A z A z
z

    

    

   

     


     
 

     

 
        

 
        

 
      

A 

How shall we express 

‘divergence’  

in cylindrical polar 

coordinate system? 

There are TWO OPERATIONS here! 

vector algebra 

calculus  

take derivatives 

PCD_STiCM 
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ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

1
ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

z z

z z

z z z

A z A z A z

A z A z A z

A z A z A z
z

    

    

   

     


     
 

     

 
        

 
        

 
      

A 

A 

zNote that the components A ,A ,A  each depends on ( , ,z)   

ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

1
ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

z z

z z

z z z

A z A z A z

A z A z A z

A z A z A z
z

    

    

   

     


     
 

     

 
       

 
       

 
      

ˆ ˆ.... but the unit vectors e ,e  also depends on   
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A  ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

1
ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

z z

z z

z z z

A z A z A z

A z A z A z

A z A z A z
z

    

    

   

     


     
 

     

 
       

 
       

 
      

1
( , , ) ( , , )

1
                 ( , , ) ( , , )z

A A z A z

A z A z
z

 



   
 

   
 


   



 
 

 

ˆ ˆ
ˆ0, ,

ˆ ˆ
ˆ0,

e e
e

e e
e

 



 



 

 

 
 

 

 
  

 
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 2

2

1 1
ˆ ˆ ˆ ˆ ˆ ˆe e e e ( , , ) e ( , , ) e ( , , )

sin

1 1 1
( , , ) ( , , )sin ( , , )

sin sin

r r r

r

A

A r A r A r
r r r

r A r A r A r
r r r r

     

 

     
  

      
   

 

   
           



  
      

ˆ
0

ˆ
ˆ

ˆ
ˆsin

r

r

r

e

r

e
e

e
e

























ˆ
0

ˆ
ˆ

ˆ
ˆcos

r

e

r

e
e

e
e



















 








ˆ
0

ˆ
0

ˆ
ˆ ˆcos sin r

e

r

e

e
e e











 













  



Expression for ‘divergence’ in spherical polar coordinate system 
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Examples for solenoidal and nonsolenoidal fields 

div 
yx z

AA A
A A

x y z

  
    

   

A 0 

Influx balances the outflux 

Solenoidal Example: B 

A 2 

x
ˆ ˆA=(x-y)e ( ) yx y e 

PCD_STiCM 
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Source 

Sink 

surface

Flux crossing a surface

( )A r da 

What happens when the size of 

the volume element shrinks, 

becoming infinitesimally small? 

Is there any net accumulation of 

the flux in a volume element? 

Sources and 
Sinks may be 
present in the 
region ! 

PCD_STiCM 
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-3 1 -2 1

( )v( ) has the dimensions 

ML  LT ML  T



    

m r r

Consider a mass/charge density  or 

crossing a certain cross-section of area 

at a certain rate.

 m c

Amount of mass/charge crossing unit area in unit time 

-3 1 -2 1( )v( ) has the dimensions QL  LT QL  T

Amount of charge crossing unit area in unit time

     c r r
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Consider a mass/charge density  or 

crossing a certain cross-section of area 

at a certain rate.

 m c

( ) ( )v( )J r r r
Current Density Vector 
current crossing unit area 

Physical quantity of interest: Density x Velocity 

Mass/Charge Current Density Vector 

Amount of mass/charge crossing unit area in unit time: 

Remember! 
Sources/Sinks may be present in the region ! 

PCD_STiCM 
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Divergence theorem: Conservation principle 

Conservation of mass or charge ( , ) represents mass/charge density r t

( , ) : mass/charge current density J r t

ˆ( )
S

J r nds I

ˆ. .  ( ). total

S V V

q
i e J r nds dV dV

t t t




  
     

    

Negative sign: 

Outward flux is at the expense of the charge inside! 

What shall we get if we integrate the flux 

emanating from all the six enclosing surfaces? 

volume surface
region enclosing

that
region

ˆ( ) ( )dV J r J r dSn   
  

Net current oozing out of that region. 

PCD_STiCM 
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V V

dV dV
t t




  
    

  
 
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Divergence theorem: Conservation principle 

ˆ( )
S

J r ndS I

ˆ. .  ( ) total

S

q
i e J r ndS

t


 



 
volume surface
region enclosing

that
region

ˆ( ) ( )dV J r J r dSn   

( )

( ) 0

J r
t

J r
t






  




  



Equation 

of 

Continuity 

Compare the integrands of the definite volume integrals 

Integral and 

Differential forms of 

the equation of 

continuity: 

conservation principle PCD_STiCM 
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 
volume
region

ˆ( ) ( )dV J r J r dSn   

Divergence theorem: Conservation principle 
Equation of Continuity 

volume
region

( ) 0dV J r
t

 
   

 


( )

( ) 0

J r
t

J r
t






  




  



Divergence theorem:  

In the absence of the creation or destruction of matter 

(no ‘source’ or ‘sink’), the density within a region of 

space can change only by having ‘matter’ flow into or 

out of the region through the surface that bounds it.  
PCD_STiCM 
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http://www.physics.iitm.ac.in/~labs/amp/ 

 pcd@physics.iitm.ac.in 

We shall take a break here……. 
 

Questions ?                    Comments ? 

Next: L28 

Equation of Fluid Motion 

 

‘continuum limit’ 

Lagrangian / Euler 

description of fluid flow 

PCD_STiCM 
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V V

dV dV
t t




  
    

  
 
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Divergence theorem: Conservation principle 

ˆ( )
S

J r ndS I

ˆ. .  ( ) total

S

q
i e J r ndS

t


 



 
volume surface
region enclosing

that
region

ˆ( ) ( )dV J r J r dSn   

( )

( ) 0

J r
t

J r
t






  




  



Equation 

of 

Continuity 

Compare the integrands of the definite volume integrals 

Integral and 

Differential forms of 

the equation of 

continuity: 

conservation principle PCD_STiCM 
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We consider an incompressible fluid. 
 

Under the application of a force, a solid gets 

pushed/pulled/spun…. or deformed. 

 

A fluid ‘flows’ 

FLUID MECHANICS 

Deformation of solids, fluid flow: “rheology” 

Non-Newtonian fluids --- example paints, foams, molten 

plastics….. 

Ever walked on a fluid ? 
PCD_STiCM 



54 

http://www.youtube.com/watch?v=f2XQ97XHjVw 
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FLUID MECHANICS 

Non-Newtonian fluids --- example 

paints, foams, molten plastics….. 

--- complex systems;  

but we shall work with “IDEAL” liquids 

Matter behaves like a solid when pressure is 

exerted on it, and like a liquid when only little 

or no pressure is exerted on it. 

 

The  fluid's viscosity depends not on shear 
but on the rate of  change of  shear 

PCD_STiCM 
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fluid of molecules  theof dimensions  

medium fluid  theof dimensions  

? 0limit      

limit)( 
0










V

V

Vof themeaningtheisWhat

V

m
rDensity

V














Classical fluid:  continuum mechanics,  

   continuously divisible matter. 

PCD_STiCM 
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The unit normal          can take any orientation. 

A

A
uN




ˆP 

Stress at the point P is     . S

ˆ
Nu

. '

.ˆ ofdirection  on the dependnot  does 

lawsPascal

uS N

“Let no one say that I have said nothing new... 
the arrangement of the subject is new. …………”  

Blaise Pascal 

1623-1662 

http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Pascal.html 

PCD_STiCM 
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The pressure is the same in 

every direction. The shape of 

the container does not matter.  

The pressure applied to an enclosed fluid is 

transmitted undiminished to every portion of the fluid 

and to the walls of the container. 

. '

.ˆ ofdirection  on the dependnot  does 

lawsPascal

uS N

PCD_STiCM 



59 

To understand the term ‘ideal’ fluid, we first define 

(i) ‘tension’, (ii) ‘compressions’ and (iii) ‘shear’. 

A

A
uN




ˆP 

F AConsider the force         on a tiny elemental area         passing 

through point P in the liquid. 

Stress at the point P is     . S

SuS

uS

SuS

N

N

N







ˆ

0ˆ

ˆ

 :S

 :S

 :S Tension 

 

Shear 

 

Compression 
NûThe unit normal          can take any 

orientation. 

An ideal fluid is one in which stress at any point is 

essentially one of COMPRESSION. 

some definitions….. 

PCD_STiCM 
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C traversed one 

way 

C traversed 

the other  way 

SuS

uS

SuS

N

N

N







ˆ

0ˆ

ˆ Tension 
 

 

Shear 

 

Compression 

Ideal fluid 

DIRECTION       of 

the ‘ORIENTATION’ 

OF THE SURFACE 

ELEMENT 

ˆ
Nu

PCD_STiCM 
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The state of a fluid is completely determined by FIVE quantities: 

).,(density   The:)5(

).,(p  pressure The:)4(

).(v :pointeach at                  

 velocity  theof components Three :(1,2,3)

tr

tr

r



Above, we consider ‘Eulerian’ position vector of a point with 

reference to a chosen frame of reference. It is not the 

position vector of any particular fluid molecule/particle. 

PCD_STiCM 
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In the Lagrangian viewpoint, one tracks the evolution in 

phase space of the entire continuous medium; has 

huge amount of detailed information. 

 

                                  - not so in the Eulerian description. 

At time t0 At time t > t0 

PCD_STiCM 
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In the Eulerian description, one is interested in quantities 

such as the density            or the velocity             and 

pressure            of an arbitrary fluid particle at    . r

)(v r )(r

 )(rp
PCD_STiCM 
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Sindhu Indus 

Vitastha Jhelum 

Asikini Chenab 

Airavati Ravi 

Satadru Sutlej 

How do we track density (r) & velocity v(r) at a point in a river?

PCD_STiCM 
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How do we track density (r) & velocity v(r) at a point in a river?

Deoprayag ("Divine confluence") 

-Bhagirathi & Alakananda, Himalayan tributaries of GANGA.  

http://www.google.co.in/imgres?imgurl=http://personal.carthage.edu/jlochtefeld/picturepages/pilgrimage/deoprayag05.jpg&im

grefurl=http://personal.carthage.edu/jlochtefeld/picturepages/pilgdeoprayag.html&h=481&w=700&sz=87&tbnid=ZQt0BRpsi0E

J::&tbnh=96&tbnw=140&prev=/images%3Fq%3Dbhagirathi%2Briver%2Bpicture&hl=en&usg=__899jmh0E8OAKvcBWqaIJPd

ON_k8=&sa=X&oi=image_result&resnum=1&ct=image&cd=1 

PCD_STiCM 
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How do we have 

TriweNi SANGAM 

at Prayag? 

PCD_STiCM 



Is     merely the position 

vector of a particular point 

in space, or is it the 

position vector of a moving 

molecule of water Ganga, 

Yamuna or Saraswathi? 

67 

Ganga 

Saraswathi 

Jamuna 

Prayag 

Triweni 

Sangam PCD_STiCM 
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‘LAGRANGIAN’ TRACKING:  
The waters of Yamuna would mix with the waters of 

Saraswathi and bring them to Prayag, into the Ganga! 

PCD_STiCM 
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Equation of motion for fluids 

two basic approaches 

Lagrangian Approach:  

Follow the motion of some particle of the fluid; 

this must be done for all particles of the fluid 

Eulerian Approach: 
 

Follow the velocity 

and density  of fluid 

at a particular point; 

this must be done for 

all points  in space 
Leonhard Euler 

(1707-1783)  

Joseph-Louis Lagrange 

1736 - 1813 

PCD_STiCM 
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,

 l v  im x
t

x EFGH

y z
y z

J

x

t

y z



  





 




 



70 

P 

12:

),(v),(),(





TMLDimensions

trtrtrJ 

r A 

B 

C 

D 

E 

F 

G 

H 

).,(  :*

).,(p :*

).(v :velocity*

trdensity

trpressure

r



Quantities of interest: 

Mass Current Density Vector 

Measure of the amount of mass 

crossing unit area in unit time. 

Amount of mass of fluid 

crossing face EFGH in unit 

time = 

t

V

t

m

tt 






 00
limlim



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P 

r A 

B 

C 

D 

E 

F 

G 

H 

Amount of mass of fluid 

crossing face EFGH in unit 

time = 

t

V

t

m

tt 






 00
limlim




zy
t

zyx
x

t







vlim
0




Amount of mass of fluid 

crossing face ABCD in unit 

time  

zy
x

x

J
rJ

P

x
x 

































2
)( V

x

J

zyx
x

J

P

x

P

x
































Net OUTWARD flux 

through the two faces 

orthogonal to x-axis = 

xê

zy
x

x

J
rJ

P

x
x 


































2
)(

zy
t

zyx
x

t







vlim
0



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P 

r A 

B 

C 

D 

E 

F 

G 

H 

V
x

J

zyx
x

J

P

x

P

x
































Net OUTWARD flux 

through the two faces 

orthogonal to x-axis = 

xê

Net OUTWARD flux through the whole  

parallelepiped, per unit volume = 

 

yx z

P
PP P

JJ J
J

x y z

                          

The choice of the term ‘DIVERGENCE’  

                                is thus well justified. 

t

equal to

must be

This 








 

quantity

t
J







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Equation of Continuity 

Conservation of Matter 

0
),(

),(

),(
),(












t

tr
trJ

t

tr
trJ





u 

utrJ

ˆof                   

direction  in the                   

flux  massˆ),( 

PCD_STiCM 
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                

Ideal fluid: stress at any point is 

essentially one of COMPRESSION. 

Face ‘1’ 

of the  

parallelepiped  

region 

Face ‘2’ 

of the  

parallelepiped  

region xê

yê

zê

PCD_STiCM 
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We can now develop the 

EQUATION of MOTION  

for a Newtonian Fluid 

PCD_STiCM 
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p

piF
i






  eunit volumper  forceNet 

V )(
6

1



   x

P

x

P

eV
x

p
ezyx

x

p
FF ˆ ˆ)2()1(  



























                  x

P

ezy
x

x

p
rpF ˆ

2
)()1( 





















 



= negative  

gradient of  

pressure 

Ideal fluid: stress 

at any point is 

essentially one of 

COMPRESSION. 

xê

“HYDROSTATIC force”  

There may be some additional  

external force acting, such as gravity. 

  x

P

ezy
x

x

p
rpF ˆ

2
)()2( 





















 



1 2 
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p                 

)(

)(lim

lim

lim

0

0

0

rg

r
m

F

V

m

m

F

V

F

external

V

external

V

external

V


































Net HYDROSTATIC force acting on 

the parallelepiped per unit volume 

External force (such as gravity) 

acting on the parallelepiped 

per unit volume 

Total {hydrostatic + external 

(gravity)} force acting on the 

parallelepiped per unit 

volume 

)(
v

)(

v
  lim

0

rgp
dt

d
r

dt

d

V

m

V













Mass x Acceleration 

“Cause-Effect” 

Newton’s law:  

Equation of Motion PCD_STiCM 
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Mass x Acceleration / “Cause-Effect” 

Newton’s law: Equation of Motion 

)(
v

)(

v
  lim

0

rgp
dt

d
r

dt

d

V

m

V













             : ‘LAGRANGIAN’ position vector of a 

moving/flowing fluid ‘particle/molecule’,  

not the EULERIAN position vector of a fixed point in 

space. 

r

)(trr Lagrangian

Fixed point in space, not a function of time 

This is a function of time 

dt

d v Is the ACCELERATION of actual material/fluid 

particle/molecule, and not just the rate at which 

velocity of the fluid is changing at a fixed point in 

space. 

Eulerr
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Mass x Acceleration / “Cause-Effect” 

Newton’s law: Equation of Motion )(
v

)( rgp
dt

d
r  

 
v

v( ( ) , ( ), ( )) ( ,v , )
d d d

r t t
dt d

x t y t z t t
t dt

   
    
   

“CONVECTIVE  DERIVATIVE OPERATOR”     The term ‘convection’ 

                                                              is a reminder of the fact that in the 

                                                              convection process, the transport 

                                                              of a material particle is involved. 

v v v v vd dx dy dz

dt dt x dt y dt z t

   
   

   















tdt

d
ei v    ..

v v v v
        

dx dy dz

x dt y dt z dt t

   
   
   

        v v
t

 
   
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viscousF
r

p

dt

trd
tr

t
















 

 )(

),(v
),(vv

Mass x Acceleration / “Cause-Effect” 

Newton’s law: Equation of Motion )(
v

)( rgp
dt

d
r  











)()(

),(v

r

p
g

r

p

dt

trd
external

External force 

field, which we 

considered to 

be gravity 

Viscous, frictional, 

dissipative term.  

This terms makes  

“dry water wet” 

 - Feynman 

Hydrodynamic 

term 
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http://www.physics.iitm.ac.in/~labs/amp/ 

….. but which Bernoulli ? 

 pcd@physics.iitm.ac.in 

We shall take a break here……. 
 

Questions ?                    Comments ? 

Next: L29 

Unit 9 – Fluid Flow / Bernoulli’s principle 
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