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Essential tools to study Fluid Mechanics / Electrodynamics, etc.



Previous Unit: Unit 7

Physical examples of fields.

Potential energy function.

Gradient, Directional Derivative, ....
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Mathematical

Connections.....

Differentiation

dy

ds

U=Ilim —

:ﬁo%w

or
05—0 55

dr

ds

Potentials - —
_

Fields

Integration / Constant of Integration

Boundary Value problem

SCALAR
POINT FUNCTIONS

PCD_STICM

VECTOR

POINT FUNCTIONS



Joh
Gauss’ Law; Carl
. . . Friedrich
Equation of Continuity. Gauss
Hydrodynamics & 1777 - 1855

Electrodynamics
illustrations.

Learning goals:

When there is no source and no sink, the density of matter
In a volume element can change if and only of matter

flows in, or out, of that region across the surface that

bounds that volume region.

The divergence theorem : an exact mathematical

: .PCD_STiCM .
expression of a conservation-principle.


http://en.wikipedia.org/wiki/Image:Carl_Friedrich_Gauss.jpg

The result is equally consequential
with regard to fields just as well as
for matter.

We shall develop further handle on
methods of vector calculus and
apply the techniques to study fluid 5SS

dynamics and electrodynamics. Johann Carl Friedrich Gauss

and Wilhelm Weber
http://www.gap-system.org/~history/PictDisplay/Gauss.html

1] dvﬁ'fA’(r)]: [[ A(r)edsn

volgme surfacg
region enclosing
that

__region
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eoo\i\\\‘i\(\\\‘ Consolidated expressions for
0 the GRADIENT
Cartesian Coordinate System du
= . 0 . 0 . O ——=UeVy
V=e —+e —+e, — o
OX oy OZ ... 8r dr
u=lm 5s  d
Cylindrical Polar Coordinate System . > S
0S =|or
-, 0 10 ., 0
V=e, -€, gle. —
op yoXol0) Oz
Spherical Polar Coordinate System
= . 0 .10 1 0
V:er—+e9——+e¢ _
or " raob rsiné op

ra \
IC IV
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dy

S

—(eVy

The ‘GRADIENT’ is a vector operator

— It IS of course not a vector.

The operator would operate on an operand and
generate new entities as a result of the operation.

Operand : SCALAR POINT FUNCTION. RESULT : Vi

Other operations using GRADIENT OPERATOR V

V. A(F) : DIVERGENCE of a VECTOR POINT FUNCTION

V x A(F) : CURL of a VECTOR POINT FUNCTION
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GRADIENT of SCALAR POINT FUNCTION. RESULT :Vy

Other operations using GRADIENT [OPERATOR| V

| V- A(F)): DIVERGENCE of a VECTOR POINT FUNCTION

A
This is NOT a scalar product of two vectors!

[V x A(F)|: CURL of a VECTOR POINT FUNCTION

)

This is NOT a vector product of two vectors!

PCD_STiCM 8



RN Field strength:
‘5;\6\&;,\000’“ Field Lines
O° VECTOR POINT

_ 1 q
E(F) = g
472'80 r2 r FUNCTION

Field intensity fall like 1/r?

\V N

AN TN
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Vector Fields:
‘Point’
function

V =V (F)=V(X,Y,2)
=V (r,0,0) =V (p.,0,2)

10



Vector Fields: — = o
V=V(r)=V(XY,Z vaRvr
Point = V{r)=Vixy.2) V =V (1)
function Y\EE_,X =V(r,0,9)=V(p,¢,2)

In the ‘continuum model’

the velocity field V =\ ()

Is a vector point fun




A(r) : A vector point function.

Define: "Flux” of a vector point function

Flux crossing a[surface}

I

su rface

A(r) o @

Flux: additive property - obtalned by integrating the quantity

what 1s the direction/orientation of n ?
UNIT NORMAL TO THE SURFACE AT A GIVEN POINT

. but which
surface?

4

oy

.. what is the directiou.f the unit normal?



Ar):
A vector point function.

Flux crossing a surface = j j A(r) e dSnh

surface

Elemental
directed/oriented

‘Area’

PCD_STICM 13




The direction of the vector
surface element must be defined
IN @ manner that Is consistent

with the forward-movement of a

right-hand screw.

right-nand-screw
convention must be

followed.

D_STiCM

Flux crossing a surface

— H A(r) e dSh

surface

C traversed
one way

C traversed
the other way






Consider the

sense/direction in .. right
which the rim of the hand
net can be traversed screw
N
/ . ~\ °
What about
some other
point ?

. and what if you ‘pinched’ the

net and pulled it ‘above’ the rim?

PCD_STICM 16




Are there non-orientable surfaces?

@ The surface under

consideration, however, better
be a ‘well-behaved’ surface!

C O O

A cylinder open at both ends is
not a ‘well-behaved’ surface!

C O

A cylinder open at only one end
Is ‘well-behaved’; isn't it already
 kkevthe butterfly net? 17
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Consider a rectangular
strip of paper, spread flat at
first, and given two colors
on opposite sides.

Now, flip it and paste the
short edges on each other
as shown.

Is the resulting object
three-dimensional?

How many edges does THE - Fh el
It have?

How many ‘sides’ does it have? U ‘

PCD_STICM




How Is the
earring?

It iIs MOBIUS !!!

PCD_STiCM _ _ 19
http://mathssquad.questacon.edu.au/mobius_strip.html



The MObius strip used to be common in belt drives

|

‘ .

(eg. car fan belt).

-~ |
Fan Belt ==
\ ! pommm—=13 2 'v!

—

o
V=N
Y

‘-;‘ \ ? ‘v . M

Modern belts are made from several layers of different materials,

- >
! a

with a definite inside and outsfde>™&Md do not have a twist. %



Maurits
Cornelius
Escher
1898 - 1972

‘ http://www.mcescher.com/

“The laws of mathematics are not merely human inventions or
creations. They simply 'are’; they exist quite independently of
the human intellect. The most that any(one) ... can do is to find

that they are there, and to taplgg‘séT(i)Céﬂnizance of them.”



Flux of a vector field

A(r): A vector
A(r): unit vector point function

normal to the surface at the point r

Flux crossing a surface

= H A(r) e dSn

surface | SCrew




Flux crossing a surface| IS there any net accumulation of
= [[ A@)edsn the flux in a volume element?
surface
Sou\rce Sources and
\ Sinks may be
™ present in the
‘\ /‘eg/'on /
Sink

What happens when the size of the volume
element shrinks,

becoming infinitesimaliyesmall? 23



Consider a@pass{Charge density p_ or p,
crossing a certain cross-section of area
at a certain rate.

—_  —s  —

Ax(r)Vv(r) has the dimensions
[lvu_'?’ LT‘1] - ML? T

—_— —  —»

Rer)V(r) has the dimensions | QL® LT™ |=QL? T

Amount of charge crossing unit area in unit time

Amount of mass/charge crossing unit area in unit tlme
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Consider a point P(X,, Y, Z,)

in a region of the vetor field A(F)

e«

25
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L 4

The point P(%,, ¥y, 2,) is in the **,
region of the vectore field A(F)

oy
.'~._¢" 1 _é

NET Flux through the xy-face, (perpendicular to €,), is

{AZ (xo, Yo, zo@%@ (xo, Yo, zo@%ﬂ SXSY

Note! Only the z-component | |Flux crossing a surface

contributes to the total flux o A
through the faces parallel to ||~ ” A(r) e dsn

the xy plane. PCD_STIC

vl surface 57




Flux crossing a surface

- ” K(F)OdSﬁ “"..""l-.-----

surface

NET Flux through the xy-face, (perpendicular to €, )

5 W, %)
|:Az (Xo, Yor Zo T 7Zj - A (Xo, yo”‘za: éj} X0y (X0:Y0:Z0)

Yo

H R 4 <4

: .
v *,

:{%} !5z5x5y =[%} oV
(X0,¥0:20)

oz
az (Xo,YO’Zo)I

Flux crossing all

the six surface elements Adding the flux through all faces, total flux

that enclose the cell ]
B = ea_ [|OA  OA, OA
- [ Apessn | P AMR)-dSA= [| >t |

PCD_STICM - — 28
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cube



Flux crossing a surface Adding the flux through
= [[ A(r)edsi all faces, total flux
surface — —_
N oA, OA, 0
b Ary-dsi= | AL Ay LA gy
closed — OX 5}/ 0z —

surface

The integrand of the volume integral is
called the divergence of the vector.

div,&:{a& +6Ay +8AZ}:§~5\

ox oy oz
1] d{%’-?&(r)]: b A(r)edsn
volume surface
region enclosing
that
region

29
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Divergence of a polar vector is a scalar

Divergence of an axial-vector Is a pseudo-scalar

PCD_STiCM
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We shall take a break here.......

Questions ? Comments ?
pcd@physics.litm.ac.in http://www.physics.iitm.ac.in/~labs/amp/

Next: L27
Equation of Continuity

v

PCD_STiCM
31
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Flux crossing a surface Adding the flux through

= [[ A(r)edsi all faces, total flux

surface

1] dr[ﬁo_A’(r)]z > A(r)edsn

volume surface

region enclosing
that
region

Gauss’ Divergence Theorem

PCD_STiCM




I.” df[§ ° E(F)] = Cﬁﬁ E(F) e dSN Application:

volume surface electric intensity

region enclosing fleld due to a

that .

region point charge

q A 2 - A
dz| Ve E(F) |= -6 |o(r’singdod s, )

volume surface 472'80r
region enclosing

that

region

Il df[V'E(r)] m drp= [ df_

volume 80 volume volume
region region region

_—

veE(r)=~| Differential (or ‘point’) form of
80 the GaUS°§[SSr§W 34




Flux crossing a surface

= H A(r) e dSh

surface

£ A(ryedsi - m@; A ﬂ\z} av

oy 0z
glljcﬁgge (X0:Y0:Z0)
The integrand of the volume integral is 6/y
called the divergence of the vector.

jl {me dV | Ve A(r) |= <fﬂ; A(r) e dSh Gauss”

region enclosing Theorem
that

region

divA’:FA& +6Ay +8AZ}:§~5\
ox oy oz

Cartesian |expression | of ‘divergence of the vector” | not
its definition! PCD_STICM 35
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Physical meaning of ‘divergence’; definition| free| from coordinate system

dv 6 o K(F) _ K(F) e dSA Take the limit of
Vg.{me [ ] Surfge_ the ratio of
eaer that total flux over 6s
region to 5\/
A(r) e AdS |
. encgc;sing N ﬂUX per un|t VOlume,
divA= lim ~ =VeA atthat point

remember: flux is defined through a SURFACE,
whereas divergence is defined at a PoINT

Flux is a scalar quantity. It is not a scalar field; it is not a
local quantity — it is not a ‘point function’.

Divergence is a scalar field; it is a scalar point function,
it is defined at each point of Space™ 36




Gauss's Divergence Theorem

If a volume V iIs bounded by a surface S, then, for vector A,

The surface integral of the normal component of a vector
A taken over a closed surface Is equal to the integral
of the divergence of A taken over the volume enclosed

by the surface H dVW.—A»(F)}: A(F) e dsh

[ 4
volume surface
region enclosing

that
region

since S is a closed surface, the unit normal ﬁ of C S
(elemental area) is the outward normal

Conversion of a surface integral to a volume integral.

PCD_STiCM 37



1] dvﬁ’-‘A’(r)]z fb A(r)edsn
volume surface
region enclosing

that
region

Physical Meaning:

Integration of the faucets
(source of vector field) over a
volume

IS equal to the

flux flowing out through the

surface enclosing the volume.

PCD_STICM
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- 19 .
div A —| OA Ay+8AZ _Tei Howshallwe express

oX oy o1 ‘divergence’
In cylindrical polar

VeA= coordinate system?

o . 0] . . A
— +€ —Z}[GPA,,(A% 2)+8,A,(0,0,2)+&,A,(p,0,7) |

vector algebra

There are TWO OPERATIONS here! /Calculus

take derivatives

Geh- |a } 8, A (0,0.2)+8,A (0,0.2)+&,A (0, 0,2) |+

kS
S

[
10 ] r, . ]
eg,,;—}[epAp(p,qo,Z)+e¢A¢,(p,¢,Z)+ezAz(p,¢,Z)]+

6, < |o[6,A (P02 A 0.0 8 AR0D)]




<]\
[
|
Il

i)
3|

} 8,A (0.0,2)+8,A,(0.0,2) +&,A (0. 0,7) |+

[
}.[épAp(p’go’ Z)+é¢A¢(p,gp, z)+¢e,A (o, 0, Z)}"‘

Note that the components A |,A ,A, each depends on (p,¢,2)

—

VeA

e

® <
o,

( N
.
-

\

-
0z

.. but the unit vectors € ,e  also depends on ¢

PP 18,A (0.0, 2)+8,A (0.0.2) +&,A (0. 0,2) |+

L Al -. ) .
;ﬁ}[ep& (0,0, 2) +€ A (p,p.2) +€,A (p, 0, Z)] +

2}[%& (o, ) s8¢y, (0, 0,2) +€,A, (0,0, 2) Jo



<]\

o
|

-

e, e ai}[epAp(p 0.2)+8,A,(p,0.2) +&,A(p,0,7) |+
€,®— 10 }[epAp(p 0,2)+8,A,(p,0,2)+&,A(p,0,2) |+
P O

e, o {%}[ép& (p.@.2)+8,A,(p.0,2)+&,A,(p,0,7)

0e oe

_p:O,_p:e’

op op 7

oe,  O€,

=0,—%=-¢

op o
- - 0 1
VeA=—A (0,0,2)+—A (p,0,27)+

op " P

1 0 0
+ ?:?c@‘ (0 0,2) + po A(p 1)




Expression for ‘divergence’ in spherical polar coordinate system

A oe -
€ _5 aﬁ:o “Te _ 0
or or or
3 A e -
aer :ég a&:_é _¢:O
00 00 ' 06
O€ " a" a"
r_ e . e R ] R
op %120 —cosge —% —_c0s 08, —sin 08,
o oQ
VeA=
0 10 1 O
e —+6,——+8@ e A(r,0,p)+e, A (r,0,p)+€ A (1,6,
{ o T8 5 ¢rsinea¢}.[ AN, 0,0)+e,A,(r,0,p)+€ A (0)]
1 0, 1 o© : 0
——|r’A(r,0,p) |+ — r,0,p)sIin @ |+— A (r,6,
r’ 8r[ Al )] r5|n<96<9[A9( p)sind| rsiné oo p(1.0.0)

PCD_STiCM
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Examples for solenoidal and nonsolenoidal fields

A=(X-Y)&, + (X+Y)§,

VeA=0
Influx balances the outflux VeA =2
Solenoidal —  Example: B ) 5 o
divA= A, + Ay +aAZ =V.A
oy 0z

PCD_STiCM 43



Flux crossing a surface -
’ |s there any net accumulation of

:ﬂ Alr) da the flux in a volume element?
Source
\ Sources and
\ Sinks may be
= present in the
x\ region !
Sink

What happens when the size of
the volume element shrinks,
becoming nfinitesimally small?

44



Consider a@pass{Charge density p_ or p,
crossing a certain cross-section of area
at a certain rate.

—_  —s  —

Ax(r)Vv(r) has the dimensions
[lvu_'?’ LT‘1] - ML? T

—_— =k  —

Re(r)V(r) has the dimensions [QL3 LT‘l} oL2 T

Amount of charge crossing unit area in unit time

Amount of mass/charge crossing unit area in unit tlme

PCD_STiCM



Consider a mass/charge density p.. or p,
crossing a certain cross-section of area
at a certain rate.

Amount of mass/charge crossing unit area in unit time:

Physical quantity of interest: Density x Velocity

NN C tD ity Vect
J(r) = p(r)v(r) | Sumrent Pensity Vector

Mass/Charge Current Density Vector

Remember/
Sources/Sinks may be present in the region !

PCD_STiCM 46



Divergence theorem: Conservation principle
Conservation of mass or charge (T, 1) represents mass/charge density

J(F,t) : mass/charge current density

What shall we get if we integrate the flux
emanating from all the six enclosing surfaces?

j J(F)+Ads = | m dv W ) j(r)] i f 1) o5t
E T et
. ) s =~ St =[] pav =[] Fav

Negative sign:

Net current oozing out of that region.

Outward flux is at the expense of the charge inside!

PCD_STiCM 47



Divergence theorem: Conservation principle

[[[ av {v-j(r)} — J(r)edsnh
volume sun:a::e_z T/=\ A
region (tarrllgtlosmg J] J (f)'ﬂds = |
region S
e, pa(-fds =~ 2 (17 gy - 17122 v
"3 ot oty v ot
Compare the integrands of the definite volume integrals
Integral and < T Op .
Differential forms of Vel(r)= ot =4 u;t'on
the equation of _ o Ui
, 0 Continuity
continuity: V-J(r)+5:0
—PCD—STICM 48
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Divergence theorem: Conservation principle

Equation of Continuity

[I] av {%’-3(?)}:3&53(?).(1%

volume

region - /= 5,0
pr e ==
Vel()+L =0
ot

Divergence theorem:
In the absence of the creation or destruction of matter

(no ‘source’or ‘sink’), the density within a region of
space can change only by having ‘matter’ flow into or
out of the region through the surface that bounds it.



We shall take a break here.......

Questions ? Comments ?
pcd@physics.litm.ac.in

Next: L28
Equation of Fluid Motion

‘continuum limit’ @
Lagrangian / Euler

description of fluid flow

http://www.physics.iitm.ac.in/~labs/amp/

PCD_STiCM
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G@\’\‘ﬁ)\o@ Divergence theorem: Conservation principle
<
\(0(0\,
. r j— [ 1(r . A e m; . A

” dV{V J(r)} T J(r)edsn J(r)endS = |
volume surface Jo
region enclosing S

that

region

e Fparnas =T 2 (70w = []f{- % } v

Compare the integrands of the definite volume integrals

Integral and -~ . 0p _
Differential forms of Vel(r)= Tt Eq U;t'on
the equation of o P L

- £ Continuity
continuity: v'J(If)+E=O

conservation principle Fee=sTeM 52




FLUID MECHANICS

We consider an incompressible fluid.

Under the application of a force, & SOlId gets
pushed/pulled/spun.... or deformed.

A fluid ‘flows’

Deformation of solids, fluid flow: “rheology”

Non-Newtonian fluids --- example paints, foams, molten
plastics.....

Ever walked on a fluid ?

PCD_STiCM 53



http://www.youtube.com/watch?v=f2XQ97XH|Vw

PCD_STiCM
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FLUID MECHANICS

Non-Newtonian fluids --- example

paints, foams, molten plastics.....

Matter behaves like a solid when pressure is
exerted on it, and like a liquid when only little
Or No pressure Is exerted on it.

The fluid's viscosity depends not on shear
but on the rate of change of shear

--- complex systems;
but we shall work with “IDEAL" liquids

PCD_STiCM 55



: - ... om
Density o(r) = |éIVI’Tl>I§ v

What is the meaning of the limit oV — 07?

Classical fluid:  continuum mechanics,
continuously divisible matter.

PCD_STiCM
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‘g‘ does not depend on the direction of U,.

Pascal's law.

—_—

Stress at the point P is S.

A

The unit normal Uy, can take any orientation.

Blaise Pascal

+025-1062 "Let no one say that I have said nothing new...

the arrangemgent.ar the subject is new. ...........

http://mwww-groups.dcs.st-and.ac.uk/~history/PictDisplay/Pascal.html

/4



‘g‘ does not depend on the direction of U,.

Pascal's law.

The pressure Is the same In
every direction. The shape of

the container does not matter.

The pressure applied to an enclosed fluid is
transmitted undiminished to every portion of the fluid

and to the walls of the container.

PCD_STiCM 58



some definitions.....

To understand the term ‘ideal’ fluid, we first define
(1) ‘tension’, (ii) ‘compressions’ and (iii) ‘shear’.
Consider the force E on a tiny elemental areaé_A) passing
through point P in the liquid.

—_—

Stress at the point P is S.

Sel, = ‘S‘ — S Tension

§.0N — (0 — S: Shear

|
>

Se ON :gtg‘ — §:; Compression | The unit normal U, can take any
orientation.

An ideal fluid is one in which stress at any point is
essentially one of TORMPRESSION. >



S ‘GN = S‘ Tension

S 'GN =0 Shear

Sely = _‘S‘ Compression
|deal fluid

DIRECTION U, of Ctraversd one
the ‘ORIENTATION’

OF THE SURFACE
ELEMENT

C traversed
Peostev - the other way



The state of a fluid is completely determined by FIVE quantities:

(1,2,3) : Three componentsof the velocity

(4):T
(5):T

at each point:T/(F).

ne pressure p(F,t).

ne density p(F,t).

Above, we consider ‘Eulerian’ position vector of a point with
reference to a chosen frame of reference. It is not the
position vector of any particular fluid molecule/particle.

PCD_STiCM 61



At time t, Attimet > t,

=

In the Lagrangian viewpoint, one tracks the evolution in
phase space of the entire continuous medium; has
huge amount of detailed information.

- notBostitthe Eulerian description. 62



In the Eulerian description, one is interested in quantities
such as the density p(r) or the velocity T/(F) and

pressure P(I) of an arbitrary fluid particle at .
PCD_STiCM
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How do we track density p(?) & Vvelocity \7(?) at a point in a river?

Sindhu - Indus

Jhelum

Chenab

Ravi

“Sutle

-

AVANTI

*Ujjayini
PCD_STiCM
AN

64




How do we track density p(r) & velocity v(r) at a point |n ariver?

! | e
Deoprayag ("Divine confluence")
-Bhaglrathl & Alakananda Hlmalayan trlbutarles of GANGA

TR 0g18*eo ik imgur|=httg 'J- sonal.carthage.edu/jIochtefel_d/picturepages/piIgrimage/deoprayagOS.jpg&im
TUd=Att R ersor yagesedu/jieehteteld/pictute ppggy/ pdgqequrayag. html&h=481&w=700&sz=87&tbnid=ZQtOBRgsiOE
tbi=08& thnv, W&/ Mage3oo: 3DBhagirathi%2Briver%2Bpicture&hl=en&usg=__899jmhOE8OAKvcBWqalJPd

e - 0 e 4 A roc 4 ' \ 28 ~
NS KO S SA=AY GYE I : SEIUILT - = S L
N T T T X ey T



How do we have
TriweNI SANGAM
at Prayag?

o’ ?Qﬁ&
- ‘/h 2 \\::7—'~
g)
INDRAPRASTHA i
5
2\ 5 KOSALA
MOHENJODAR’

K 4 MATHURA « (qmira
\ i ang Kapllavastu
, MATSYA 7 \ PN %Q
! . ,q ® Vaishali /
VATSA my \ %
Kaushambie // Champa
CHEDI

AVANTI

~

.
MAGADHA

*Ujjayini

PCD_STIiCM
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Is © merely the position

vector of a particular point

In space, or is it the

SP¥rayag
A Triweni

BGR SR 67



‘LAGRANGIAN TRACKING:
The waters of Yamuna would mix with the waters of

Saraswathi and bring them to Prayag, into the Ganga!

/’}

AVANTI

BN
1 *Ujjayini
e . \ )
PCD_STiCM 68
BN AN !




Equation of motion for fluids
two basic approaches

Lagrangian Approach:
Follow the motion of some particle of the fluid,;
this must be done for all particles of the fluid

Joseph-Louis Lagrange
1736 - 1813

Eulerian Approach:

~ Follow the velocity
and density of fluid

at a particular point;

this must be done for

all points in space

PCD_STICM Leonhard Euler
(1707-1783)




Quantities ofint_grest:
*velocity :v(r).

* pressure: p(?,t).

*density : p(F,t).

Mass Current Density Vector
3I(r,t) = p(r,)v(r, 1)
Dimensions : ML T

Measure of the amount of mass
crossing unit area in unit time.

Amount of mass of fluid
crossing face EFGH in unit

time = on .. pdV
IIm — = lim ——
g&—0 X &—0 St
. POXOYOZ
_gtlgwo P =pV, O0YOz
= K Ereno Yoz

PCD_STiCM 70




Amount of mass of fluid
crossing face EFGH in unit

time =
= Ilmﬁ_ lIm —— pN

&—-0 St &—-0 St

e POXOYOL
_'LHIE éi '_'/)Vx68h52

Amount of mass of fluid
crossing face ABCD in unit

“mi{ax&@[@;x 5k

Oy OL

STiICM

Net QU TWARD flux

through the two faces
orthogonal to x-axis =

2| axoper
OX |p

:[aJX} Py
OX |p
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Net OUTWARD flux

through the two faces
orthogonal to x-axis =

[ajx} OXoY oz
oxX o e
_ [a\]x} Py
oX |p _ .
This quantity
Net OUTWARD flux through the whole must be
parallelepiped, per unit volume =
equal to
f 0J, | 5
(2] [2] (2] -0 2
K ax 5 i ay 1p az P) P 8t
The choice of the term ‘DIVERGENCE’ Vel —— op

IS thus wedbjigueNied. ot



Equation of Continuity
Conservation of Matter

603(;‘},'[) = — 6'02:’0

E(F,t) e I = mass flux
In the direction
of U

Vel(ft)+ @Pg[’ﬂ 0
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of the Face ‘2’
parallelepiped of the
54 region parallelepiped
v s region

ldeal fluid: stress at any point is
essentially one of COMPRESSION.

PCD_STiCM
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We can now develop the
EQUATION of MOTION

for a Newtonian Fluid

PCD_STiCM

75



— -~ Jop] & .
F=1p00| L | Hlyaiee) T LIS
OX |, 2 A
k( ] 3 )\ ex —
= > O OX A Ideal fluid: stress
F(2)=1pMB| 5| S Hyeeke,)  wanyoni
\ _@X_P 2 ) essentially one of
- COMPRESSION,
. — op . op A
FO+F(2)=— — | Xldyozf+€,)=——| oV e
O +F@)=- 7| HFakre)=- | Ve,
6 — — “HYDROSTATIC force”
Z F(1)=—VpPoV| |There may be some additional
i=1

Net

external force acting, such as gravity.

per Unit V0|ume:_vp — negative
gradient of

PCD_STiCM

pressure
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Net HYDROSTATIC force acting

the parallelepiped per unit volume

on

b 16

External force (such as gravity)
acting on the parallelepiped
per unit volume

- F external
= |lim
oV —0 oV

N-=0 oM

F external >

o p(r)

= |lim
oV —0

= gp(r)

PCD_S

Total {hydrostatic + external
(gravity)} force acting on the
parallelepiped per unit

volume
.im@.
oV —
- dv .
p(r)a =-Vp+gp(r)

Mass X Acceleration
“Cause-Effect”
Newton’s law:

TicM Equation of Motion 77




Mass x Acceleration / “Cause-Effect” |im om dv
Newton’s law: Equation of Motion N0V dt

_— (N =-Vp+gp(r)

;/ I’ : 'LAGRANGIAN’ position vector of a
moving/flowing fluid ‘particle/molecule’,

not the EULERIAN position vector of a fixed point in
space.

I' Lagrangian= 1T (t)‘: This is a function of time

—_

I' eu1s— Fixed point in space, not a function of time

|s the ACCELERATION of actual material/fluid
particle/molecule, and not just the rate at which
velocity of the flgbig#hanging at a fixed point in,g
space.




Mass x Acceleration / “Cause-Effect” --d v —

Newton’s law: Equation of Motion p(l’) — =—-Vp+ ﬁp(F)
dv [d]-
preie [a} v(r(t), [ }v(x(t) y(t), z(t),t)

8v dx OV dy oV dz av
- ox dt @ydt 8zdt ot

dv (dxav dyav dz@v+6\7
“ldt ox  dt oy | dt oz) o

:[mi}v
ot

“CONVECTIVE DERIVATIVE OPERATOR” The term ‘convection’
d |:_, . O J IS areminder of the fact that in the

—=|VeV 4+ — convection process, the transport
dt otPP-°5FY material particle is involved®

1.e.

o




—_

Mass x Acceleration / “Cause-Effect” ,~.dv — —~ -
Newton’s law: Equation of Motion p(r) at =-Vp+gpo(r)

dv(r,t) _ _V»p _ _V_>p @ External force
dt ,O(r) ,O(I’) < field, which we

considered to
be gravity

.. /

- = 0 |~ dv(r,t) -
veV +— |v(r,1) = =
=y = Vi F s

- - /

Hydrodynamic Viscous, frictional,
term dissipative term.

This terms makes
“dry water wet”
PCD_STiCM - Feynman 8o




We shall take a break here.......
Questions ? Comments ?

pcd@physics.litm.ac.in http://www.physics.iitm.ac.in/~labs/amp/

Next: L29
Unit 9 — Fluid Flow / Bernoulli's principle

..... but which Bernoulli ? @

PCD_STiCM
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